Computational Motor Control: Redundancy and Invariance
نویسندگان
چکیده
منابع مشابه
Computational motor control: redundancy and invariance.
The nervous system controls the behavior of complex kinematically redundant biomechanical systems. How it computes appropriate commands to generate movements is unknown. Here we propose a model based on the assumption that the nervous system: 1) processes static (e.g., gravitational) and dynamic (e.g., inertial) forces separately; 2) calculates appropriate dynamic controls to master the dynamic...
متن کاملRedundancy, Self-Motion, and Motor Control
Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics ...
متن کاملComputational Motor Control: ERN
1. Duffin J (1991) A model of respiratory rhythm generation. Neuroreport 2:623–626 2. Richter D, Ballantyne D, Remmers JE (1986) How is the respiratory rhythm generated? A model. News Physiol Sci 1:109–112 3. Botros SM, Bruce EN (1990) Neural network implementation of the three-phase model of respiratory rhythm generation. Biol Cybern 63:143–153 4. Balis UJ, Morris KF, Koleski J, Lindsey BG (19...
متن کاملComputational motor control
We discuss some of the computational approaches that have been developed in the area of motor control. We focus on problems relating to motor planning, internal models, state estimation, motor learning and modularity. The aim of the chapter is to demonstrate, both at a conceptual level and through consideration of specific models, how computational approaches shed light on problems in the contr...
متن کاملComputational approaches to motor control.
This review will focus on four areas of motor control which have recently been enriched both by neural network and control system models: motor planning, motor prediction, state estimation and motor learning. We will review the computational foundations of each of these concepts and present specific models which have been tested by psychophysical experiments. We will cover the topics of optimal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neurophysiology
سال: 2007
ISSN: 0022-3077,1522-1598
DOI: 10.1152/jn.00290.2006